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1.0 Introduction

Let X 1 .... X N be a sample of N observations taken from a bivariate normal distribution with unknown mean
vector # and covariance matrix E, and let X and S be the respective 2 x 1 sample mean vector and 2 x 2 sample

covariance matrix calculated from the X/. Given a desired containment probability/3 and a level of confidence 3',
the problem addressed is to find a region about X that contains at least 100/3 % of the X-distribution with probability

7.

When S 1 exists, an ellipse R about X for any positive number c may be defined by

R = R(_,S, c) = ix: (x-_)'S-_(x-_) < c} (I-I)

For a future observation X distributed according to N/Iz,E), the probability that X e R is given by

I(c) - 2n[NI i'/_Re 2 dx (1-2)

For each new sample of N observations, R, which depends on X and S, is a random region in 2-dimensional

Euclidean space; thus for a fixed general c, I(c) is a random variable taking values in (0,1). In particular, we seek

c ° (not depending on the unknown/z or E), such that

P{I(c*) > 13] = y (1-3)

The corresponding ellipse R(X,S,c°), known as a tolerance region, solves the problem.

Based on the work of John (1963) for a general p-variate normal distribution, the following approximation

for c ° is given by Chew (1966):

(N-l) PI_ (P, -_N) (1-4)

I.tl_y ((N-l)p)

where u '_(p,X) is the/3-percentage point of the noncentral chi-squared distribution I with p degrees of freedom and

noncentrality parameter X, and ul__(m ) is the (1-7)-percentage point of the central chi-squared distribution with m

degrees of freedom. Equation (1-4) is easier to evaluate than more precise but complicated expressions, such as

given by Siotani (1964). Chew states, "the approximation is good if 1/N 2 is negligible"; however, it appears (see

section 3) that for the bivariate normal case (p = 2), _" underestimates c ° by a factor 1 - A/N where A depends on

andT.

For general values of p, (1-4) has stood the test of time; for example it was cited and used by Rode and

Chincilli (1988) in their paper on transforming clinical laboratory measurements. When p = 2, however, it is
t

feasible to significantly improve the approximation by direct calculation of I(c) within a Monte-Carlo simulation of

values of X and S (see section 2). Estimation of A by comparing the resulting more accurate estimates of c° with

?" makes it feasible to use a corrected form of (I-4) to obtain accurate easily computed tolerance regions.

' Chew defines the noncentrality parameter "in accordance with that in Wilks" (1962); i.e. a noncentral chi-

squared random variable with m degrees of freedom and noncentrality parameter k is distributed as Z _ + Y, where

Z _ N(XI/2,1) and Yhas a central chi-squared distribution with m-1 degrees of freedom.



2.0 Monte-Carlo Estimation of c*

For X _ N(#, F,) and any level of confidence, it can be shown that as N becomes large, c* approaches co

= -2log(1-/3). This is because co satisfies

-_--* (2-I)
p{(x-_)'r.-_(X-_) _Co} = 1-e 2 = 13

(e.g., see Cram4r (1963)) and X and S converge in probability to # and E as N increases. For finite iV, the solution
11¢

to (1-3) isc =Kc oforsomeK> 1.

Let X;1/2 be a "square-root" of X; in the sense that X;1/2f_1/2) ' = E. By making the transformation y =

F, -1/2(x-#) in (1-2), it can be shown that the solution to (1-3) is the same as when/_ = O, E = I and X and S are

obtained from a sample of N observations from the N(0,/)-distribution. As a result, it will be henceforth assumed

that# = Oand/2 =I.

For each combination of N = 10, 40(5), 50, /3 =.90, .95, .99, .999 and selected values of c in the range

c = Kc o (I < K _; 7.5), 1000 realizations of X and S were randomly generated taking # = 0 and 2= I. (This

can be done without generation of the individual observations; see Odell and Feiveson (1966)). For each X and S,

I(c) was then calculated by numerical integration (see appendix).

With/3 fixed, Q(c) = P{I(c) > /3} is a monotonic increasing function of c, with c* being the root Q(c*)

= ",/. From the simulation, for each trial value of c, say ci, the observed proportion of times, qi, that l(c i) exceeds

/2, is an estimate of Q(ci). For each N and/3, an interpolating quadratic function was fitted to the points (Yi, cO,

where Yi = -l°g(1-qi)," (.80 <_ qi < .999), then set equal to y,( = -log(1-'y) to solve for %, the estimate of c* for

"y = .90, .95 and .99. As an example, a plot ofy i vs ci along with the interpolating quadratic function is shown for

N = 10 and/3 = .99 in figure 1. The three horizontal lines represent the values ofy v which define %.
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Figure 1. Yi = -l°g(1-qi) vs ci for N = 10;/3 = .99
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Originally, X and S were kept fixed as c was varied for given N and/3; however, it was noticed that unnatural

patterns in plots ofy vs c would often result. Consequently, it was decided to avoid all dependence between results

by regenerating _ and S for each value of c, despite the extra computational effort.

3.0 Accuracy of Point Estimates

The major sources of error in c v are (1) the numerical integration used to compute l(c) and (2) the process

of fitting an interpolating polynomial to the qi and solving for c. A check against the first error was made by using

a sufficiently small step size so that values of I(c) resulted in 1 (to within 5 decimal places) as c was made

arbitrarily large. The second error contains a random component induced by the binomial distribution of the qi and

some bias due to inverting the estimated y vs c relationship as well as possible model error (the true relationship

may not be quadratic). Because the obtained fits were so tight (e.g., see fig. I), the bias in c v was considered

negligible.

To estimate the variance of the random error, a replicate of the entire simulation was made. Under the

assumption of constant coefficient of variation, differences between the results were used to estimate a CV of about

1.5% for individual values of c v. For the final smoothing described below, results of the two runs were averaged,

further reducing the error CV by a factor of_2.

4.0 Final Results

Values of c.9 o, c.9 s, and c.9 9 for each Nand/3 are shown in table 1 along with corresponding values of

obtained from (1-4). A comparison reveals that the latter tend to be smaller by a factor of 1 - A/N where A depends

on/3 and "y, thus suggesting smoothing the c.¢ using ? as a concomitant variable. Given _', one may then better

estimate c* by

c' = _[N/(N-A)]. (4-1)

Using the data in table 1, estimated values of A for various/3 and 7 were obtained by regression through the origin

of I - ?"_/c'r against I/N. These values are shown in table 2. Although there were only eight values of N for each

of the nine regressions, the fits were almost exact. Standard errors of A-estimates ranged from .04 to .22,

corresponding to pertubations in c' between 0.4 and 2.3 percent for N = 10, and between 0.08 and 0.45 percent

for N = 50. By contrast, errors in uncorrected ? are about 50% for N - 10 and 5 - 10% for N = 50.
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i0 .999

Table 1. Values of cA, and
/

"y-Confidence Tolerance Ellipsoid of Content/3;

Bivariate Normal Distribution

7 = .90 y = .95

12.53 8.38 15.45 9.69
17.07 10.89 21.40 12.60

28.05 16.72 35.46 19.34

45.42 25.06 57.25 28.99

24.93

34.69

58.85

91.78
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16.86

25.89

38.81
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Table 1 (Cont.), Values of c. t and

"/-Confidence Tolerance Ellipsoid of Content _/;

Bivariate Normal Distribution

y = .90 T = .95 y =

9.

12.

20.

31.

23 7.26 10.68 8.12

47 9.43 14.67 10.56

23 14.50 23.65 16.22

75 21.71 37.90 24.29

14.33

21.01

32.80

52.91

7.

I0.

16.

26.

91 6.72 8.93 7.38
44 8.74 11.78 9.60

86 13.43 19.20 14.75

57 20.15 30.21 22.14

11.36
15.09

25.43

40.58

10.13

13.17
20.24

30.31

8.87

11.54
17.74

26.63

7.25 6.39 8.00 6.94 9.95 8.16
9.66 8.32 10.68 9.03 13.07 10.61

15.31 12.78 17.09 13.88 21.57 16.30

24.19 19.19 27.09 20.85 34.43 24.49
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9

14

22

.83 6.17 7.45 6.65

.04 8.03 9.89 8.65

.23 12.34 15.78 13.30

.26 18.49 24.58 19.92

8.97

11.91

19.65

30.19

6

8
13

21

.53 6.01 7.01 6.44

.58 7.82 9.32 8.38

.52 12.02 14.65 12.87

.33 18.02 23.33 19.29

8.27

ii.ii

17.50

27.52

6•

8.

13.

20.

30 5.89 6.78 6.28
36 7.66 8.98 8.16

14 11.78 14.20 12.55

31 17.67 21.97 18.83

7.91
10.40

16.78

26.04

6•

7.

12.

19.

02 5.71 6.42 6.04

90 7.43 8.40 7.86

52 11.43 13.36 12.09

03 17.15 20.41 18.13

7.33

9.70

15.40

23.75

7.68

9.99

15.36
23.01

7.35

9.56

14.69

22.01

7.09
9.23

14.18

21.27

6.73

8.75

13.46

20.19

Table 2. Values of A for Correcting

Non-central Chi-Squared Approximation for

Bivariate Normal Tolerance Regions.

0.90 0.95 0.99

0.900 3.153 3.543 4.553

0.950 3.521 3.994 5.103

0.990 4.093 4.606 5.800

0.999 4.725 5.254 6.334

Correction is c' = ?[N/(N-A)].

As an example, for N = 10, a 90 %-tolerance region (7 = .90) that contains at least 99 % of the population (13

= .99) is found by first computing the chi-squared approximation (1-4), giving ? = 16. 72, and then correcting

4



it with equation (4-1). Table 2 gives A = 4.093; hence c' = 16. 721101(10 - 4.093)] = 28.31. The desired tolerance

region is the ellipse {x:(x-X--)'Sl(x-_) < 28.31}.

5.0 Concluding Remarks

This paper has illustated how Monte-Carlo simulation, along with simple regression modelling, can be used

to improve a theoretical approximation for a useful special case. The approximation is easily obtained if one has

access (through software or tables) to the percentage points of the central and non-central chi-squared distributions.

Correction to more accurate values for bivariate normal tolerance regions is readily accomplished for conventional

values of/3 and _, using the appropriate value of A in table 2.

If one does not have a ready means of obtaining non-central chi-squared percentage points u _(p,X), an
approximation given in Abramowitz and Stegun (1966) provides even greater simplification of computation with little

loss of accuracy when p = 2. Abramowitz and Stegun give u _(p,X) _ (1 +b)u#(p*) where p* = a/(1 +b), a =
p + X and b = X/(p + X). Here, p = 2 and X = 2/N, hence 1 + b = (N+ 2)/(N+ I) and p* =
2(N+I)Z/[N(N+2)]_ 2 so that for larger values of N, one may simply use

u_(p,l) = (N+2) u_(2)
(N+I)

^ (N+2) io (i-_)
= -z -_-_-_ g

(5-1)
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Appendix

Obtaining l(c) by Numerical Integration

Equation (1-2) may be rewritten

x_L gL (xz)

(A-l)

wheref(x z) is the density of x2; i.e. N(0,1) andf(x I Ix2) is the density of the conditional distribution ofx 1 given x2,

which is also standard normal, since E= I. The limits x2H and x2L are given by ._2+(cS2zfl/2 and for fixed x 2, the

limits of x 1 are given by

gx (×2), gL (x2)
_2

where S = (Sij). The inner integral in (A-l) is easily computed as _[(gn(x_)]- ¢b[(gL(x_] where (b is the standard
normal cumulative distribution function for which good approximations are available.
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